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Lip2Seq: Sequence-to-Sequence Lip Reading
via Phoneme Prediction and Mel Spectrogram

Reconstruction
UP904749

Abstract—Despite considerable advances in lip-reading research using pre-trained audio-visual encoders and fine-tuned decoders,
there remains a lack of extensive evaluation of potential shortcomings inherent to phoneme-centric methodologies. This paper aims to
bridge this gap by scrutinizing different lip-reading video representations and their accompanying classifiers to ascertain the most
effective approach. Furthermore, we extend our exploration to the simultaneous prediction of acoustic speech features and phoneme
classes from video frames, driven by encouraging results obtained from the same audio-visual encoders. To ensure robust validation,
we evaluate these tasks on two novel datasets specifically designed to represent a simplified version of real-world lip-reading scenarios.

Index Terms—Lip phoneme recognition, phoneme confusion, lip reading, speech reconstruction, multi-task learning

✦

f

1 INTRODUCTION

Unlike studio recordings, speech in naturalistic settings
is rarely free of noise: outside recordings suffer corruption
from natural and man-made interference such as wind and
traffic noise [1]. Whereas speech recorded indoors suffers
corruption from mechanical noise and overlapping speech
from non-target speakers [2].

This motivates the need for recognising speech in the
presence of distorted or absent auditory information. One
solution is lip reading, often referred to as visual speech
recognition, which has gained significant traction in the
speech recognition and speech synthesis domains [3]. Lip
reading is the technique of understanding speech by vi-
sually interpreting the movements of the lips, face, and
tongue.

There is active research into speech synthesis and recog-
nition with only visual information. Prior synthesis methods
relied only on visual information which holds incomplete
information about speech [4], and has been demonstrated to
have much lower performance compared to visual speech
recognition [5][6][7][8].

However, recent advances such as Audio-Visual Hid-
den Unit BERT (AV-HuBERT) [9] provide a self-supervised
representation learning framework utilising both audio and
visual speech related information, with strong lip reading
performance (achieving a 26.9% WER on LRS3). This pa-
per provides a pre-trained encoder model which computes
an audio-visual embedding of videos which can be used
for vision-only speech related downstream tasks, such as
speech recognition and speech synthesis [10]. Speech recog-
nition in the AV-HuBERT paper is performed using either
phoneme prediction with Connectionist Temporal Classifi-
cation (CTC) [11], or a sequence-to-sequence (S2S) approach
using sub-word units. The paper found that the S2S model
provided superior performance, but the CTC approach had
better performance with smaller datasets.

Other approaches [12] have recently achieved a phoneme
accuracy rate of 70% which led to an 18% lower word-error
rate compared with state-of-the-art lip-reading approaches,

which provides compelling evidence to explore this ap-
proach further. Phoneme classes are also used as an input for
many speech synthesis systems [13], [14], [15] which shows
how phoneme classification can be used across lip reading
tasks.

Despite the advantages, phoneme classification for lip
reading suffers from the issue of mapping visemes (vi-
sual equivalent of phonemes) to phonemes, as multiple
phonemes may appear the same on the lips (homophenous)
[16].

This phoneme classification confusion poses a significant
challenge to lip reading technologies, as the misclassification
of phonemes can lead to inaccurate interpretation of visual
cues. This could subsequently decrease the overall accuracy
and efficiency of speech recognition or synthesis systems,
impacting their real-world applicability.

Prior research has shown that discretised SSL (self-
supervised learning) speech features from the HuBERT [17]
model encode mostly phonemic information and less about
speaker and noise characteristics, however, the multi-modal
AV-HuBERT [9] approach captures linguistic and phonetic
information from the lip movement and audio streams into
its latent representation. This suggests that it might also be
possible to predict the mel-spectrogram features from this
audio-visual latent space.

To investigate the pitfalls of current phoneme classi-
fication systems and whether the auxiliary task of mel-
spectrogram prediction from AV-HuBERT embeddings is
possible, this paper proposes a novel sequence-to-sequence
lip reading model called Lip2Seq, with a focus on the
phoneme classification component. Dlib [18] facial land-
marks and embeddings from the AV-HuBERT model are
explored with a variety of classifiers to determine the
best method for phoneme classification. The auxiliary mel-
spectrogram prediction is achieved by adding a projection
layer from the neural network to also predict the acoustic
features.

Validation of the proposed approach is performed with
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Fig. 1: Overview of the proposed multi-task model frame-
work.

two custom datasets which are created to match the criteria
of a single speaker talking with their mouth clearly visible,
with these criteria explained further within the paper.

Thorough experimentation shows that the proposed
method achieves strong phoneme classification results and
provides an in-depth phoneme confusion analysis for the
best performing, along with model analysis of the predicted
mel-spectrogram features.

2 METHOD

Let X = {x1, ..., xT} ∈ RTxLxC be dlib predicted fa-
cial landmarks or X = {x1, ..., xT} ∈ RTxD a AV-
HuBERT BASE or Self-Trained LARGE embedding, Y =
{y1, ..., yT} ∈ RTxP be target phoneme classes for each
video frame, and A = {a1, ..., aT} ∈ RTxB be the
acoustic feature of ground-truth speech represented as a
mel-spectrogram. T indicates the frame lengths (which are
trimmed to the minimum of X , Y and A to resolve rounding
errors), L and C are the number of facial landmarks and
number of co-ordinates per landmark, respectively, D is the
embedding dimension size for either of the AV-HuBERT
models, P is the number of possible phoneme classes and
B is the number of mel-spectrogram bins.

The main task is to translate the input video feature X
into the phoneme class Y and for the auxiliary learning task,
to simultaneously predict the mel-spectrogram features A.
Training the model on both tasks simultaneously can risk
performance degradation. To mitigate this, we apply a
weight to both terms of the loss function for stabilisation.
To this end, the joint loss function for the neural network
with the auxiliary task is shown in Eq 1.

λmain controls the phoneme classification loss and λaux

controls the reconstruction loss. λmain is set to 1.0 and λaux

is set to 0.01 by default, respectively.
The proposed multi-task model framework is illustrated

in Figure 1.
Refer to Appendix A for phoneme generation details.

LLip2Seq = λmainCrossEntropyLoss(Ŷ , Y )
+λauxMSE(Â, A)

(1)

3 EXPERIMENTS

3.1 Datasets

The following dataset creation criteria are used for this
paper:

• Single speaker (Acoustic representations might con-
tain different characteristics of speakers, tones, ac-
cents, etc, which makes it hard to infer mel-
spectrogram features across different settings)

• Speakers mouth is constantly visible (as the lip
movements are required to infer the phoneme and
acoustic speech features)

Two novel datasets are constructed for this paper from
public YouTube videos. The first video was chosen as it
had a short duration and served to validate the proposed
Lip2Seq model. The second dataset contains approximately
16.63 times more data (frame-wise) than the first. A reduced
version of the ARPABET [19] phoneme dictionary is adapted
for the phoneme class targets. Full details of both dataset
sources and statistics are provided in Appendix B.

3.1.1 Jordan Peterson Shorts Video (Shorts)

This video lasts 51.38 seconds and runs at 30FPS, for a
total of 1,233 frames. It contains 143 contiguous words and
spaces. The video contains 540 phonemes in total.

3.1.2 Jordan Peterson Lecture Video (Lecture)

This video lasts 11 minutes and 23.72 seconds and runs at
30FPS, for a total of 20,532 frames. It contains 2,165 contigu-
ous words and spaces. The video contains 7187 phonemes
in total.

3.2 Implementation Details

Full source code can be found at: 1

3.2.1 Video Frame Features

Two types of visual features are explored, raw facial land-
marks inferred from the dlib library [18], which produces
68 facial landmarks with an x and y value each, where
these features are included as a baseline. Also, the visual
feature embeddings pre-computed from the AV-HuBERT
[9] BASE and Self-Trained LARGE models, with 768 and
1024 dimensions, respectively, are used as they have known
strong performance for phoneme classification based on the
original paper [9].

1. https://github.com/MiscellaneousStuff/comp-vis-avhubert

https://github.com/MiscellaneousStuff/comp-vis-avhubert
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3.2.2 Dataset Preprocessing
For all datasets, the audio with a sample rate of 16kHz
is converted into a mel-spectrogram using a hop length
matching the input video frame temporal resolution (either
33ms for 30fps or 41ms for 24 fps), with excess items in the
mel-spectrogram trimmed to match the length of the visual
features, and a window size of 64ms. The mel-spectrograms
have 80 channels, which matches many SOTA vocoders [20].
This allows seamless audio generation in future work. Refer
to Appendix A for phoneme pre-processing details.

3.2.3 Model Details
For the phoneme classification task, multiple classifiers are
explored, namely multiple SVM [21] variants (Linear, Poly-
nomial, Radial Basis Function, Sigmoid) due to its known
strong classification performance, Random Forest [22] (due
to its data efficiency and robustness to raw data inputs) and
the proposed custom PyTorch-based [23] neural network
model. The architecture of the neural network model is a
simple feedforward neural network where the input layer is
the video frame features (dlib or AV-HUBERT embedding),
this is projected to a hidden layer with a unit count of 256 or
512 (512 units are only used for the Self-Trained AV-HuBERT
LARGE embedding) with a ReLU activation function, and
then a final softmax layer is applied for the phoneme class
prediction. For the auxiliary mel-spectrogram prediction
task, another layer is projected from the hidden layer with
an output dimension of 80 (number of mel channels per
frame).

3.2.4 Training Details
A fixed random seed of 42 is used for all experiments to
ensure reproducibility. All models are initially assessed by
overfitting to the entire dataset. This process, while avoided
in the final model, can indicate the viability of a model by
showing whether it can potentially attain a 100% or near
100% phoneme accuracy rate, and whether it can accurately
reproduce the mel-spectrogram for that task, based on MSE
loss and visual inspection.

For the neural network training, the initial learning rate
is set to 1e−4, a batch size of 1 and the AdamW optimiser
[24] is used. A StepLR optimiser is used with a step size of
2500 and a gamma of 0.1, and the epoch count is 5,000. A
dropout value of 0.5 is used during training for regularisa-
tion [25]. These hyperparameters were found by empirically
testing which epoch saw the training loss continued to
decrease but the test loss began to plateau or increase.

The random forest model uses the default number of
estimators (100), and all of the SVM models use the default
sklearn settings.

All training runs use the same shuffled dataset, per
dataset, and use k-fold cross-validation with 5 splits, where
the mean score of the 5 splits is recorded in the results.

3.2.5 Evaluation Metrics
For the phoneme classifiers, the classification accuracy is
used to evaluate all of the models. For the best performing
model for each dataset, the precision and recall are used
to evaluate the models for each phoneme class. For the
auxiliary mel-spectrogram synthesis, change in phoneme
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Fig. 2: Confusion Matrix for Shorts Dataset (AV-HuBERT
Large and 512 dim Neural Network)
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Fig. 3: Precision and Recall per Phoneme Class for Shorts
Dataset (AV-HuBERT Large and 512 dim Neural Network)

accuracy and the MSE Loss of the reconstructed mel-
spectrogram is used evaluate the effect of the auxiliary tasks
loss weighting on the multi-task model, and to determine
reconstruction fidelity, respectively.

3.3 Discussion
The phoneme classifiers are examined per dataset, with the
shorts then lecture dataset results being presented.

3.3.1 Feature and Classifier Analysis
Tables 1 and 2 show the shorts and lecture dataset phoneme
classification results, respectively. For both datasets, going
from dlib facial landmarks to the Av-HuBERT BASE em-
beddings significantly improves performance (24.67% to
56.95% and 12.47% to 58.02%), with the best model being
the Lip2Seq model for both datasets (63.56% and 65.65%).

However, going from the BASE to LARGE Av-HuBERT
model only benefits the SVM (Linear) and Lip2Seq models
(64.31% to 65.06% and 65.65% to 65.82%, respectively) for
the Lecture dataset, and reduces performance for everything
else. This is possibly due to the SVM (Linear) and Lip2Seq
models being able to deal with the larger feature count
(1024) of the LARGE Av-HuBERT embedding.
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Fig. 4: Confusion Matrix for Lecture Dataset (AV-HuBERT
Large and 512 dim Neural Network)
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Fig. 5: Precision and Recall per Phoneme Class for Lecture
Dataset (AV-HuBERT Large and 512 dim Neural Network)

The best performing model for both datasets was the
Lip2Seq model with the LARGE AV-HuBERT features.
Whereas for the dlib features, the Random Forest performs
the best (49.91% and 29.44%), likely due to it being best
suited to the raw inputs and lower dataset sizes. This is
further demonstrated as it’s performance drops the most
out of all classifiers (-20.47%) when applied to the lecture
dataset, instead of the shorts one.

3.3.2 Precision, Recall and Phoneme Confusion
The precision and recall values per phoneme class, per
dataset are shown in Figures 3 and 5, for the best performing
model for each dataset. The macro precision and recall
(0.6314, 0.5713 for shorts and 0.6459, 0.6241 for lecture),
show that the precision remained similar between datasets,
but the recall improved significantly (+0.0528).

The improved recall is likely due to more examples of
minority classes such as ”th” and ”y”, which aren’t present
in the shorts dataset (refer to Fig 7) but is in the lecture
dataset (refer to Fig 8), as the recall values for ”th” and ”y”
both go from 0 to roughly 0.5 and 0.9, respectively.

The confusion matrices for the Lip2Seq Large AV-
HuBERT features are displayed in Figures 2 and 4. Only

the confusion matrix for the lecture dataset is considered,
due to the multiple missing phonemes for the shorts dataset
confounding the analysis. Interestingly, phonemes which
would possibly be expected to be confused (plosives: ”b”,
”p”, which are phonemes which are produced by stopping
the airflow using the lips, teeth or palate) are almost never
confused for one another (only 1 prediction for ”p” when it
was truly ”b”, and 0 vice-versa) which makes sense given
both of their high precisions (roughly 0.8 and 0.75 for ”p”
and ”b”, respectively). In fact, ”b” is more likely to be
confused as ”ah” (9 false predictions) compared to any other
phoneme.

Another interesting finding is that the ”sil” silence
phoneme has a high precision and recall (0.9, 0.8), which
means that the classifier is good at predicting when a person
is not speaking. This is a useful property of the classifier as
identifying breaks in speech is essential to accurate continu-
ous speech recognition (i.e, being able to discern individual
words and pauses).

3.3.3 Mel-Spectrogram Prediction

The results of the Lip2Seq models simultaneous mel-
spectrogram reconstruction and phoneme classification are
summarized in Table 3, which presents the impact of alter-
ing the λaux value across a range of weights on phoneme
classification accuracy and Mean Squared Error (MSE) loss
for the mel-spectrogram reconstruction. This is performed
using the AV-HuBERT Large Lip2Seq model.

Interestingly, the results indicate an inverse relationship
between the weightings for the mel-spectrogram reconstruc-
tion loss and phoneme accuracy. This suggests that as we
put more emphasis on minimizing the mel-spectrogram
reconstruction loss, the model’s ability to accurately classify
phonemes diminishes. One possible explanation for this
trend is that the neural network finds it challenging to learn
a representation over the LARGE Av-HuBERT embedding
that can be used to simultaneously predict the phoneme
class and reconstruct the mel-spectrogram features.

Moreover, the MSE loss values suggest that the model is
most successful at reconstructing the acoustic features when
the auxiliary learning task, the mel-spectrogram reconstruc-
tion, is given a small weighting of 0.01. In fact, the MSE loss
seems to increase (i.e., the reconstruction becomes worse) as
the weighting for the auxiliary learning task increases. This
relationship demonstrates the challenges the model faces
when trying to optimize for two objectives at the same time.

To further analyze these findings, Figure 6 provides a
comparison between the predicted and ground truth mel-
spectrograms on a validation set. This validation set is
a separate 10% slice of the original dataset, which was
not shuffled and was kept separate from the training and
test sets. The shuffling of data during model training was
deliberately avoided in order to maintain the same phoneme
distribution in both training and test sets, especially for the
shorts dataset.

Visual inspection of the predicted and ground truth mel-
spectrograms reveals that the model has effectively learned
the boundaries between predicted phonemes, as indicated
by the distinct gaps between the roughly orange rectangular
blocks in the mel-spectrograms. Nonetheless, the model
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Fig. 6: λaux = 0.01 Predicted and Ground Truth Mel-
Spectrogram Snippets (AV-HuBERT Large and 512 dim
Neural Network)

seems to struggle with capturing the finer details of the
phonemes themselves.

There are two primary possible explanations for this
limitation. Firstly, it could be the case that the LARGE Av-
HuBERT embedding does not contain sufficient information
to discern pitch waveforms for the predicted phoneme.
This possibility is supported by findings from the original
HuBERT paper [17], which indicated potential limitations in
the information capacity of the Av-HuBERT embeddings.

Alternatively, the challenge could lie in the architecture
of our model. Our current model uses a linear projection
for predicting the mel-spectrograms, which might not be
adequate for capturing the complexity of the acoustic fea-
tures. Future work could explore sequential architectures,
such as Transformer [26] or LSTM [27] architectures, or addi-
tional training strategies to better capture these features and
further improve the model’s performance in both phoneme
classification and mel-spectrogram reconstruction.

Model Dlib
(Phone
Acc)

Av-HuBERT
BASE
(Phone Acc)

Av-HuBERT
LARGE
(Phone Acc)

SVM (Linear) 13.14% 63.15% 62.09%

SVM (Poly) 22.80% 48.05% 45.78%

SVM (RBF) 15.50% 56.81% 53.73%

SVM (Sigmoid) 9.00% 55.76% 54.22%

Random Forest 49.91% 54.38% 48.86%

Lip2Seq 37.46% 63.56% 65.58%

Mean 24.64% 56.95% 55.04%

TABLE 1: Feature-wise Comparison of Each Classifier for
Shorts Dataset

Model Dlib
(Phone
Acc)

Av-HuBERT
BASE
(Phone Acc)

Av-HuBERT
LARGE
(Phone Acc)

SVM (Linear) 8.16% 64.31% 65.06%

SVM (Poly) 8.23% 56.21% 56.69%

SVM (RBF) 8.03% 60.90% 57.33%

SVM (Sigmoid) 7.43% 45.84% 44.16%

Random Forest 29.44% 55.53% 52.79%

Lip2Seq 13.51% 65.65% 65.82%

Mean 12.47% 58.07% 56.98%

TABLE 2: Feature-wise Comparison of Each Classifier for
Lecture Dataset

λaux Phoneme Accuracy MSE Loss

0.00 65.82% N/A

0.01 63.75% 7.5695

0.10 63.67% 8.0597

0.50 62.94% 8.7936

TABLE 3: Comparison of λaux Weighting on Phoneme Ac-
curacy and Mel-Spectrogramm Reconstruction Loss. (AV-
HuBERT Large and 512 dim Neural Network)
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4 CONCLUSION

In this paper, a sequence-to-sequence model is proposed
which linearly projects features from a pre-trained audio-
visual encoder model for phoneme classification, with an-
other projection used for acoustic feature prediction. The ex-
perimental results prove that the approach performs well for
phoneme classification but the mel-spectrogram synthesis
performed poorly and may require a different architecture
or other approach.

ACKNOWLEDGMENTS

I would like to extend my gratitude to Mr. Dinghuang
Zhang, my lecturer, for taking the time to entertain my many
project ideas throughout the semester, useful critique of the
ideas I presented and the encouragement throughout.

REFERENCES

[1] J. P. Bello, C. Silva, O. Nov, et al., Sonyc: A system
for the monitoring, analysis and mitigation of urban noise
pollution, 2018. arXiv: 1805.00889 [cs.SD].

[2] S. Watanabe, M. Mandel, J. Barker, et al., Chime-6 chal-
lenge:tackling multispeaker speech recognition for unseg-
mented recordings, 2020. arXiv: 2004.09249 [cs.SD].

[3] A. Fernandez-Lopez and F. M. Sukno, “Survey on
automatic lip-reading in the era of deep learning,”
Image and Vision Computing, vol. 78, pp. 53–72, 2018,
ISSN: 0262-8856. DOI: https : / / doi . org / 10 . 1016 /
j . imavis . 2018 . 07 . 002. [Online]. Available: https :
/ / www. sciencedirect . com / science / article / pii /
S0262885618301276.

[4] M. Kim, J. Hong, S. J. Park, and Y. M. Ro, “Cromm-
vsr: Cross-modal memory augmented visual speech
recognition,” IEEE Transactions on Multimedia, vol. 24,
pp. 4342–4355, 2022. DOI: 10.1109/TMM.2021.3115626.

[5] K. Vougioukas, P. Ma, S. Petridis, and M. Pantic, Video-
driven speech reconstruction using generative adversarial
networks, 2019. arXiv: 1906.06301 [eess.AS].

[6] D. Michelsanti, O. Slizovskaia, G. Haro, E. Gómez,
Z.-H. Tan, and J. Jensen, Vocoder-based speech synthesis
from silent videos, 2020. arXiv: 2004.02541 [eess.AS].

[7] M. Kim, J. Hong, and Y. M. Ro, Lip to speech synthesis
with visual context attentional gan, 2022. arXiv: 2204 .
01726 [cs.CV].

[8] R. Mira, K. Vougioukas, P. Ma, S. Petridis, B. W.
Schuller, and M. Pantic, “End-to-end video-to-speech
synthesis using generative adversarial networks,”
IEEE Transactions on Cybernetics, vol. 53, no. 6,
pp. 3454–3466, Jun. 2023. DOI: 10 . 1109 / tcyb . 2022 .
3162495. [Online]. Available: https : / / doi . org / 10 .
1109%2Ftcyb.2022.3162495.

[9] B. Shi, W.-N. Hsu, K. Lakhotia, and A. Mohamed,
Learning audio-visual speech representation by masked
multimodal cluster prediction, 2022. arXiv: 2201 . 02184
[eess.AS].

[10] W.-N. Hsu, T. Remez, B. Shi, J. Donley, and Y. Adi,
Revise: Self-supervised speech resynthesis with visual input
for universal and generalized speech enhancement, 2022.
arXiv: 2212.11377 [eess.AS].

[11] A. Graves, S. Fernández, F. Gomez, and J. Schmidhu-
ber, “Connectionist temporal classification: Labelling
unsegmented sequence data with recurrent neural
networks,” in Proceedings of the 23rd International Con-
ference on Machine Learning, ser. ICML ’06, Pittsburgh,
Pennsylvania, USA: Association for Computing Ma-
chinery, 2006, pp. 369–376, ISBN: 1595933832. DOI: 10.
1145/1143844.1143891. [Online]. Available: https://
doi.org/10.1145/1143844.1143891.

[12] R. El-Bialy, D. Chen, S. Fenghour, et al., “Develop-
ing phoneme-based lip-reading sentences system for
silent speech recognition,” CAAI Transactions on In-
telligence Technology, vol. 8, no. 1, pp. 129–138, 2023.
DOI: https : / / doi . org / 10 . 1049 / cit2 . 12131. eprint:
https : / / ietresearch . onlinelibrary. wiley. com / doi /
pdf / 10 . 1049 / cit2 . 12131. [Online]. Available: https :
//ietresearch.onlinelibrary.wiley.com/doi/abs/10.
1049/cit2.12131.

[13] H. Kim, S. Kim, and S. Yoon, Guided-tts: A diffu-
sion model for text-to-speech via classifier guidance, 2022.
arXiv: 2111.11755 [cs.SD].

[14] Y. Ren, C. Hu, X. Tan, et al., Fastspeech 2: Fast and high-
quality end-to-end text to speech, 2022. arXiv: 2006.04558
[eess.AS].

[15] K. Shen, Z. Ju, X. Tan, et al., Naturalspeech 2: Latent dif-
fusion models are natural and zero-shot speech and singing
synthesizers, 2023. arXiv: 2304.09116 [eess.AS].

[16] H. L. Bear and R. Harvey, “Phoneme-to-viseme map-
pings: The good, the bad, and the ugly,” Speech Com-
munication, vol. 95, pp. 40–67, 2017, ISSN: 0167-6393.
DOI: https://doi.org/10.1016/j.specom.2017.07.001.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167639317300286.

[17] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia,
R. Salakhutdinov, and A. Mohamed, “Hubert: Self-
supervised speech representation learning by masked
prediction of hidden units,” IEEE/ACM Trans. Audio,
Speech and Lang. Proc., vol. 29, pp. 3451–3460, Oct.
2021, ISSN: 2329-9290. DOI: 10 . 1109 / TASLP. 2021 .
3122291. [Online]. Available: https : / / doi . org / 10 .
1109/TASLP.2021.3122291.

[18] D. E. King, “Dlib-ml: A machine learning toolkit,”
Journal of Machine Learning Research, vol. 10, pp. 1755–
1758, 2009.

[19] D. Jurafsky, A. Bell, E. Fosler-Lussier, C. Girand, and
W. Raymond, “Reduction of english function words in
switchboard,” vol. 7, Nov. 1998. DOI: 10.21437/ICSLP.
1998-801.

[20] J. Kong, J. Kim, and J. Bae, Hifi-gan: Generative adversar-
ial networks for efficient and high fidelity speech synthesis,
2020. arXiv: 2010.05646 [cs.SD].

[21] C. Cortes and V. Vapnik, “Support-vector networks,”
Machine learning, vol. 20, no. 3, pp. 273–297, 1995.

[22] T. K. Ho, “Random decision forests,” in Proceedings
of 3rd international conference on document analysis and
recognition, IEEE, vol. 1, 1995, pp. 278–282.

[23] A. Paszke, S. Gross, F. Massa, et al., Pytorch: An imper-
ative style, high-performance deep learning library, 2019.
arXiv: 1912.01703 [cs.LG].

[24] I. Loshchilov and F. Hutter, Decoupled weight decay
regularization, 2019. arXiv: 1711.05101 [cs.LG].

https://arxiv.org/abs/1805.00889
https://arxiv.org/abs/2004.09249
https://doi.org/https://doi.org/10.1016/j.imavis.2018.07.002
https://doi.org/https://doi.org/10.1016/j.imavis.2018.07.002
https://www.sciencedirect.com/science/article/pii/S0262885618301276
https://www.sciencedirect.com/science/article/pii/S0262885618301276
https://www.sciencedirect.com/science/article/pii/S0262885618301276
https://doi.org/10.1109/TMM.2021.3115626
https://arxiv.org/abs/1906.06301
https://arxiv.org/abs/2004.02541
https://arxiv.org/abs/2204.01726
https://arxiv.org/abs/2204.01726
https://doi.org/10.1109/tcyb.2022.3162495
https://doi.org/10.1109/tcyb.2022.3162495
https://doi.org/10.1109%2Ftcyb.2022.3162495
https://doi.org/10.1109%2Ftcyb.2022.3162495
https://arxiv.org/abs/2201.02184
https://arxiv.org/abs/2201.02184
https://arxiv.org/abs/2212.11377
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/https://doi.org/10.1049/cit2.12131
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/cit2.12131
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/cit2.12131
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cit2.12131
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cit2.12131
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cit2.12131
https://arxiv.org/abs/2111.11755
https://arxiv.org/abs/2006.04558
https://arxiv.org/abs/2006.04558
https://arxiv.org/abs/2304.09116
https://doi.org/https://doi.org/10.1016/j.specom.2017.07.001
https://www.sciencedirect.com/science/article/pii/S0167639317300286
https://www.sciencedirect.com/science/article/pii/S0167639317300286
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.21437/ICSLP.1998-801
https://doi.org/10.21437/ICSLP.1998-801
https://arxiv.org/abs/2010.05646
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1711.05101


7

[25] N. Srivastava, G. E. Hinton, A. Krizhevsky, I.
Sutskever, and R. Salakhutdinov, “Dropout: A simple
way to prevent neural networks from overfitting.,”
Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014. [Online]. Available: http://www.
cs.toronto.edu/∼rsalakhu/papers/srivastava14a.pdf.

[26] A. Vaswani, N. Shazeer, N. Parmar, et al., “Atten-
tion is all you need,” in Advances in Neural Infor-
mation Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, et al., Eds., vol. 30, Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.
neurips . cc / paper files / paper / 2017 / file /
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[28] S. Tomar, “Converting video formats with ffmpeg,”
Linux Journal, vol. 2006, no. 146, p. 10, 2006.

[29] jianfch, Stable-ts: Asr with reliable word-level timestamps
using openai’s whisper, 2023. [Online]. Available: https:
//github.com/jianfch/stable-ts.

[30] A. Radford, J. W. Kim, T. Xu, G. Brockman, C.
McLeavey, and I. Sutskever, Robust speech recognition
via large-scale weak supervision, 2022. arXiv: 2212.04356
[eess.AS].

[31] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner,
and M. Sonderegger, “Montreal forced aligner: Train-
able text-speech alignment using kaldi,” Aug. 2017,
pp. 498–502. DOI: 10.21437/Interspeech.2017-1386.

APPENDIX A
PHONEME DICTIONARY, GENERATION AND PRE-
PROCESSING

A.1 Phoneme Dictionary
The phoneme dictionary used for this paper is the ARPABET
[19] dictionary because the version of the Montreal Forced
Aligner used to generate the phonemes was trained on
the ARPABET phoneme dictionary, as is commonly used
in speech recognition. However, the original version of the
ARPABET dictionary resulted in a dictionary of 62 different
phoneme classes which was excessive and many of them
had overlapping roles. Therefore the phoneme dictionary
used was reduced from the original generated phonemes
down to 40 phoneme classes.

For the convenience of the reader, the mapping of
phonemes from the original ARPABET predictions to the
IPA phonetic alphabet is provided in Table 4.

A.2 Phoneme Generation
The phoneme class targets for each dataset are generated
using the following procedure: the MP3 file of the source
video is extracted using ffmpeg [28], then a modified version
[29] of the large OpenAI Whisper model [30] is used to
generate a word-level transcription of the audio and then a
script is used to reproduce the word-level transcript into the
TextGrid format expected by the Montreal Forced Aligner
(MFA) [31].

At this stage, MFA was often failing to compute the
phoneme predictions on the generated TextGrid file as any

Phoneme Category ARPABET Phoneme IPA Phoneme
Nasals m m

n n
ng N

Plosives p p
b b
t t
d d
k k
g g

Fricatives s s
z z
f f
v v
th T or D
sh S
zh Z
hh h

Affricates ch tS
jh dZ

Approximants r r
l l

w w
y j

Vowels ih I
ey eI
ae ae
aa A
ow oU
uw u
ah V or @
er 3‘ or 3r
uh U
ao O
oy OI
ay aI
aw aU
eh E
iy i

Liquids l l
r r

Glides w w
y j

Voiced z z
v v

zh Z
dh D
m m
n n

ng N
r r
l l

w w
y j
b b
d d
g g
jh dZ

Voiceless s s
f f

th T
sh S
hh h
p p
t t
k k
ch tS

TABLE 4: ARPABET to IPA Phoneme Mapping
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Fig. 7: Phoneme Distribution of Shorts Video
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Fig. 8: Phoneme Distribution of Lecture Video

two overlapping word-level predictions would cause it to
fail, therefore the TextGrid transcription was manually mod-
ified to fix these errors. The iterative process of fixing word-
level timestamps and MFA validating the TextGrid file was
not illustrated. Finally, the predicted phonemes are returned
from MFA as a Phoneme TextGrid file containing the times-
tamps for each word and phoneme for that dataset. The
entire procedure, along with required manual intervention
and file types at each stage are illustrated in Figure 9.

A.3 Phoneme Preprocessing
The phoneme class targets are generated by getting word-
aligned transcripts for the audio files using the Whisper ASR
model [30], and then passing them to the Montreal Forced
Aligner [31] to get the predicted phonemes with 10ms
temporal resolution. These phoneme classes are interpolated
to match the temporal resolution of the mel-spectrogram
features and video frame features.

Extract MP3 from
Video File

Generate Word-Level
Transcripts using
Whisper Large

Fully Automated
Human-Intervention
(Manual)

Generate TextGrid for
MFA using Word-
Level Transcripts

Manually Fix Word-
Level Timestamp

Overlaps

Generate Phonemes
using MFA and Word-
Level Transcriptions

Audio JSON Word
TextGrid

Word
TextGrid

Source Video File Phoneme TextGrid
File

Video Phoneme
TextGrid

Fig. 9: Phoneme Generation Procedure

APPENDIX B
DATASET SOURCES

B.1 Jordan Peterson Shorts Video Details
Figure 7 shows the phoneme class distribution for the shorts
dataset and how it is characterised by a heavy tail, with
a small number of phoneme classes (s, ah, n, ih, dh, etc.)
having at least 80 phoneme instances or above, whereas (sh,
g, ch, ng, uh and zh all have under 10). The silence ”sil”
phoneme class occurs 4.29% out of the phoneme instances.

• Title: The False Appeal of Communism
• URL: https://www.youtube.com/watch?v=wsDmwoOrpR8
• FPS: 23.976024
• Width, Height: 406x720
• Duration: 51 seconds

B.2 Jordan Peterson Lecture Video Details
Figure 8 shows the phoneme class distribution for the
lecture dataset and how it is characterised by a heavy tail,
with a small number of phoneme classes (ah, s, dh, ae, etc.
) all being represented over a 1,000 times out of the 20,532
phoneme instances, and many of the classes at the opposite
end of the distribution (ng, aw, sh, ch, etc.) barely occuring
100 times. The silence ”sil” phoneme class occurs 1.51% out
of the phoneme instances.

• Title: Jordan Peterson on the meaning of life for men.
MUST WATCH

• URL: https://www.youtube.com/watch?v=NX2ep5fCJZ8
• FPS: 29.970030
• Width, Height: 1280x720
• Duration: 11 minutes and 24 seconds
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